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Abstract: The expectation of a ratio of two statistics is usually obtained by the method in which
the denominator is expanded into a binomial series around its mean. However, this method can
less generally be employed because the expansion of the denominator is not always valid. This
paper presents a device in which the expectation of a ratio of two statistics can more generally be
obtained. The device is to adopt a positive value as ‘catalyzer’. It can be applied not only to the
ratio of estimates based on samplies but also to ratio of any two statistics, if the denominator is
positive and finite.
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1. Introduction

It is a quite basic matter to obtain the bias of a ratio of two statistics. Koop (1951)
presented a formula of bias in the ratio of two sample means in detail and gave a
conclusion that the expressions for the bias obtained by assuming restriction in the
denominator’s range of variation and by not assuming this restriction are identical.
However, Funatsu (1980) objected to Koop’s theory. The theory below is to be an
alternative theory to Koop’s. By the theory below, conventional theories such as
Murthy’s (1962) regarding to the bias in non-linear function of estimators will be
much generalized.

Suppose there are two statistics ¥; and ¥,.

Let ¥, be an unbiased estimator of ¥, that is not equal to zero, i.e.

E(¥))=Y,#0
and Y, be an unbiased estimator of Y; such that

Pr(L;<Ya<L,)=1 ¢}
where L, and L, are positive values so fixed as to make their difference L,— L,

small. If ¥, has its lower bound Y51y, and the upper bound Y5, then L, and L, can
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be expressed as
Li=Y,py—¢& Ly=Y55+¢ (2)

where € is a small positive value (see Fig. 1).

Yoy Yo

vy 4

- - A
Li= Yin—e Yo= E(Y;) L= Yant+e

Fig. 1. Probability distribution of ¥5.

From (1), we see

Li<Y,<L, 3)
and we can find another fixed positive value & which satisfies
L, <2kY,. )
From (3) and (4), we have
k> —2%% > —;— (5)

2. Extended concept of the moment

Consider a variable ¥;. We already know the two kinds of moments E(¥,¥) and
E(Y, — Y;)* where Y, is the mean of ¥, and ¢ is the degree taking 0,1,2, 3, ....

Thus, we generally use zero or the mean as the base (center) of the moment.
However, we need not adhere to zero or the mean. By using 4,, we can define more
generally E(¥, — 1,)?. Clearly, this can be expressed by the conventional moments
no higher than a-th degree. Similarly, we can define E(¥; ~ 1,)%(¥,— 1,)# for the
joint distribution of two variables ¥; and Y. The series of these extended moments,
of course, characterizes their population. And these can be estimated by a sample.

In the discussion below, we shall use the following type of moment defined by

E(Y1—kY)(Y2— kY1)’ =a45(k)
Ly 1

=0,1,2,..., B=0,1,2,..., k>—2>_
* p 2Y,” 2

When k =1, the above moment resumes the conventional form, and writing

E(¥ -Y))*(F,-Y;)P =04,
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Gqp(K) is expressed by using the conventional moments and product-moments. For
example, when =90, 1,2 and =0, 1,2, 3,4, we have (up to fourth degree)
geo(k) =1, ayo(k)=—(k— 1Y, oo (k)=—(k- DYz, h
o0(k) =030+ (k— 1)2Y7,
on(k)y=ay+k—-1*Y,Y,,
oo (k) =Gz + (k— 1) Y5,
o (k) =03 = 2(k— 1) Y01, — (k— D) Y2050 - (k- 1)} Y Y3,
o12(k) = 12— 2(k — 1) Y301, — (k= D) Y 00— (k— 1)*Y, Y3,
003(k) = Gg3 — 3(k = 1) Ys00, — (k— 1)’ Y3,
02 (k) = 02— 2(k— 1) Y1012 — 2(k— 1) Y203, + (k- 1)?Y{ 02
+(k—12Y{ a3 +4(k—1)2Y, Y01, + (k~ D*Y]YF,
o13(k) =013 - 3(k— 1) Y0, — (k— 1) Yjo03 + 3(k— 1)* Y7 0y
+3(k—1)2Y, Y200, + (k— 1)*Y, Y7,
Goa(k) = o4 — Ak — 1) Y3003 + 6(k — 1)2 Y200 + (K — 1)*Y3. y

- (6)

3. The ratio and its expectation

Let us denote by R = Y; /Y, the ratio of ¥, to Y3, and R = ¥, /¥, the corresponding
ratio of the estimators used for the estimation of R. In order to obtain the expecta-
tion of R, first we rewrite R as follows:

Y, kY;+ ¥, —-kY, Y, - kY, Y, —kY;\!
Il WL S 'xR(1+—L——l)(l+2 2). N
Y, kYr+Y—kY, kY, kY,
From (1) and (4)
7, — -
kY Li-kY,_
kY, kY,
Y,— kY, L,—k 2kY, - kY;
2 2 22 Y2< 2 2_1
kY, kY, kY,
Therefore
¥, - kY,
—l<—=<1. 8
kY, (8)

Hence, the expansion of

Y, — kY, \"!
()
kY,
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becomes valid. Expanding this, we have
Y, — kY- - kY,
(- ) - § o (Pt
kY, kY,

1~?=R(1 +——Y’_ky') f (- 1),(” —’sz)’

kY,

_ x T Yz-kYz)j (]7]—le> (?2—kY2>’Z
_Rigo( b {( kY, * kY, kY, ) ©)

Taking expectations term by term in (9), we have

- = 4 Y, — kY, \! Y~ kY \/Yo— kY, \
s =r 5w B (22 Ve (252 (252 ]
i=0 kY, kY, kY,

and

_R i": (_1),‘{0'0;(")._*_ 01; (k) }
i=0 (kYz) kY (kY2)
_ 1 & /-1 a,; (k) 00,i+l(k)}j|
=R [1+ k igl (kY2> { Y: Y, (10
L, 1
where k >——>—.
2y, 2

(7) is not the only expression of R. We will have various expressions according
to the initial form of expansion. For instance, if we employ

- ?l Y|+)71—?] 1 ?;—'Yl ?2—kY2 -t
R = — = — =R—1{1+ 1+ —
Y, kY,+Y,—kY; k Y, kY,

we then have another expression of E(R).

4. Approximate expressions for E(R)

As seen in (10), the expectation of R is expressed by an infinite series which is con-
vergent and contains k. But & has no effect on the sum of (10), but influences the
rapidity of convergence. In this sense, we call k a ‘catalyzer’. However, in practice,
since we take only the first few terms up to certain degree, & has an effect on their
sum.

The approximation in (10) should be done considering the accuracy of approxi-
mation. The accuracy can be measured by the relative discrepancy between the
approximate value and the true one. From practical point of view, it will be con-
venient to take the number of accurate figures (after rounding off) in the approxi-
mate value as ‘accuracy’ (see Table 1). v

Needless to say, we will not be satisfied with the accuracy of s=0.

Since (10) is convergent, if we give s and k, the minimum degree d up to which the
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Table 1

Comparison of approximate and true values for different degree of accuracy

Approximate value 185.5 2.954 0.826 0.04361 37768
True value 590.7 3.101 0.834 0.04362 37771
Degree of accuracy s 0 1 2 3 4

addition has to be operated is determined. Thus we know that 4 is a function of s
and k, i.e.

d= f(s, k) (11)
s=0,1,2,3,..., k>i>—l—, d=(0),2,3,...
2y, 2 T
Since (10) is a convergent infinite series, we can certainly find a finite series for
approximation under an appropriate choice of s, & and d. Practically, s should be
given first at our disposal. Consequently, our interest is to find the interval of k a
value in which minimizes d. We call such interval ‘optimum interval’ of k. Now, let
ko be a value in the optimum interval and d, the corresponding value of 4. Thus, we
obtain a set of (sp, ko, dy) where sy = accuracy, k, = optimum catalyzer, and dy =
degree of approximation. &, and d, are dependent on the joint probability distribu-
tion of ¥; and ¥;.
Using &, and d,, the approximate expression of (10) is given as follows:

5Y) o= 1A —1 Y (a1i(ko) _ C’o,i+1(ko)}]
ER)=R [l+k0 ";1 (koY2) { Y, Y5 (12)
(dy = 2).

The moment gy ;. ; (ko) and the product-moment a,; (k) can be expressed in terms
of conventional ones by (6) and the like. Thus, we have the second degree of
approximation

o c
E(R):=R{1+kig ;"2-23— Yl%)} (13)
corresponding to dy = 2, the third degree of approximation
E(R):=R{l+3k°3—2 (a"j-— 24 )——% g0 _ 0‘22)] (14)
ko Y ko \Ys Y1Y;

with dy =3, and the fourth degree of approximation
N 6k2 — 8ko+ 3 (aoz _ _on )

ko Y7 YY,

4k, —3 c o, c
_ o4 (a'o:_ :22)+i4 ;o:__ 133)} (15)
ko Y; NY; ko \Y 1Y;

EWR)=R {1
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for dy=4.

Thus, we have approximate expressions of E(R) as given in (13), (14) and (15).
Needless to say, (14) is better than (13), and (15) is better than (14) under our defini-
tion of accuracy. But, we have here to pay attention to these formulas.

Firstly, suppose (13) is applied to a sampling distribution, and k,>1 in certain
size n. In this situation, if the sample size increases, then k;, will approach unity and
it seems as if the bias in R got greater. But, actually, the bias decreases, since Op, O
and E(R) vary when n varies, while Y), ¥> and R are constant.

Secondly, as seen in (13) and (14), if &, > 1, then

3ko—2 1
s 3¢
kp k
This does not mean that (13) is a better approximation than (14). Actually, (14) is

still better than (13), adjusted by the third degree of the moment and the product-
moment. Similarly, (15) is better than (14). These are illustrated by the numerical

study in Section 6.

5. Approximation for k,

To find the value of k&, from (5), we shall write in a practical form

L+ ColL,
ko= —————— 1
0 2Y, (16)

where C, > 0. It follows that

Y,-kY, 2%,-(L;+GoLy)
kY,  Ly+GCylL,

and from (1)
L,-2-Gy)L, < Y~ koYs < L,-GoL,
L+ CyL, kY, Ly+GCyL,

For rapid convergence of the series (10), it is desirable that (¥, - k, Y;)/k Y, has a
small range of variation around zero. Therefore, if we put Cy=1 as an intuitive
decision, then (¥,—koY;)/koY; varies within +(Ly—L,)/(Ly+L;). If Co=1, the
right hand side of (16) becomes (L, + L,)/2Y,. The reason why we said in Section 1
that L; and L, are so fixed as to make their difference small lies here. Hence,
(L2+L,)/2Y, becomes one of our reasonable approximation for k,. However,
(L2+L,)/2Y, may not be optimum. The optlmum values will be found by further
study.

When ¥, has the lower bound Y1) and the upper bound Y5, from (2), we have

—1<-

Yag+e+Yhyy—& Yo+ Yo

ko == =
0 2Y, 2,
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Further, when the probability distribution of ¥, is symmetric, then
Yo+ Yop)) =Y,

and ko := 1. When k=1, it follows that | ¥, — ¥;|/¥; < 1. Consequently, (10) resumes
the conventional expression. Particularly, if ¥; is the mean of a simple random
sample under the condition that the sample size is large and the sampling fraction is
small or zero (when independently sampled), the probability distribution of ¥,
becomes approximately normal and symmetric by the effect of central limit. It is
also known that if the sampling fraction tends to 4, then the probability distribution
of the sample mean becomes approximately symmetric irrespective of sample size.
Therefore, we can say that it will be reasonable to put ko =1 when the sample size or
the sampling fraction is fairly large. This coincides with our common sense.

In connection with the choice of kg, it looks also reasonable to choose k that
minimizes E{(¥,—kY;)/kY,}? or E|(¥;—kY,;)/kY,|. But this idea is not always
valid, because k can become less than L,/2Y,.

The theory developed above.is applicable to the ratio of two sample means. For
simplicity, we shall consider this ratio when a simple random sample of size n from a
population of size N is selected. Since &y and d, are dependent on the joint
probability distribution of the two sample means, k¢ and d, are also dependent on 7.
Now, we shall write here ko(n) and dy(n) instead of kq and d,, respectively. It is
obvious that d(n) decreases as n increases. According to the above discussion, ky(n)
approaches to unity as n increases. Moreover, when n is fairly large, ko(n) will
change little for large changes of n. As an example, if dy(7) =2 under given accuracy
So, we have the second degree of approximation as follows:

1 N—-—n1l [fog a1
ER :=R[l —{— - )]
®) +{k0(n)}2 N-1n \Y? Y7,
where e E(F.)
=—1’ R=—], EY =Y, EY =Y,
Y, E(T,) (1))=Y, (=Y,

¥, = sample mean of ¥; with size n,
¥, = sample mean of ¥, with size n,
o = E(¥,- 11 )%, oy =E@ - )T - 1h).
According to empirical study, when n becomes large, although k,(n) tends to

unity, the coefficient (N —n)/{ko(n)}2(N —1)n still decreases and the bias in K
becomes small as a whole, since ky(7) changes so little.

6. A numerical study

For the practical use of (10), we shall consider data on household size and
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monthly expenditure for a population of 128 households given by Murthy (1972). In
the study below, we pay attention to
(1) lower bound of k,
(2) approximate value of &,
"‘(3) rapidity of convergence of (10) by various aggregates of sample means and by
~isome values of k, and
“(4) relation between k; and the sample size n.
For the above mentioned data,

Y, = 10537/128 = 82.3203125,
R=Y,/Y, = 16.36180242.

Table 2 shows other basic values for systematic samples of size n=1,2,4, ...,64
from the above data.

Y, = 644/128 = 5.03125,

Table 2 A
Basic values by sample size
_ Lower bound Optimum
Sample size n L, L> for k=L2/2Y> ko:=(L2+L1)/2Y>
1 1 21 2.087 2.2

.2 1.5 13 1.291 1.44
A4 2.75 10 0.993 1.27
'8 3.25 8 0.795 1.12
‘16 4.0625 6 0.596 1
32 4.25 5.53125 0.549 0.97
64 4.828125 5.234375 0.520 1

Table 3-Table 9 show the rapidity of convergence of the following formula for
different values of k and d for the respective samples.

1 a0 /-1 Y (oK) 0giv1(k)
EWR):=R [1 +— ¥ AL a7
k i-1 \kY, Y; Y,
The bold figures are true to eight places of decimals.
Table 3 Table 4
E(R)in (17) for n=1 E@®)in (17) for n=2
d k=21 k=22 k=2.4 d k=13 k=144 k=1.6
-2 16.5157 9119 16.4974 0238 16.4757 4387 2 16.3125 9330 16.3216 9639 16.3293 1631
3 . 16.7559 3365 16.7166 4956 16.6636 1046 3 16.6370 2766 16.5526 0757 16.4911 5358
4 16.9049 5575 16.8686 2462 16.8155 0784 4 16.4410 7119 16.4909 3225 16.5002 1412
10 17.5336 9304 17.5036 3798 17.4492 9879 10  16.5596 4712 16.6497 4705 16.6503 1687
30 17.9680 5665 17.9616 9800 17.94329082 20  16.5992 2701 16.6953 6744 16.6941 1902
100 18.0325 7997 18.0286 0735 18.0284 9719 40  16.6232 2528 16.7003 1365 16.7002 6155
250 18.0370 0152 18.0286 9403 18.0286 9403 80  16.6535 8361 16.7003 6231 16.7003 6228 -

E(R)=18.0286 9403, R =16.3618 0242,

B(B)= 1.6668 9161

E(R)=16.7003 6231, R = 16.3618 0242,

B(R)= 0.3385 5989
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Table 5 Table 6
E(R)in (17) for n=4 ER)in(17) for n=8
d k=1 k=1.27 k=1.6 d k=1 k=1.12 k=1.3
2 16.5056 5904 16.4509 9325 16.4179 9569 2 16.3047 4110 16.3163 1325 16.3280 3785
3 16.7105 2096 16.5889 2895 16.5101 5665 3 16.3564 8650 16.3433 9717 16.3360 0749
4  16.5157 5623 16.5899 4190 16.5604 1195 4  16.3282 0489 16.3356 9809 16.3370 1818
5  16.7363 1947 16.6235 8464 16.5909 2217 5  16.3452 5632 16.3399 8261 16.3383 3634
10 16.5242 8329 16.6280 8595 16.6265 6390 10 16.3383 7180 16.3388 1818 16.3388 4140
20 16.5365 5286 16.6287 4650 16.6287 3833 15 16.3388 6266 16.3388 3008 16.3388 3048
30 16.5473 8619 16.6287 4793 16.6287 4790 20  16.3388 2748 16.3388 2983 16.3388 2985

E(R)=16.6287 4793, R =16.3618 0242,
B(R)=0.2669 4551

E(R)= 16.3388 2983, R = 16.3618 0242,

B(R) = —0.0229 7259

Table 7 Table 8

ER)in (17) for n=16 E(R) in (17) for n=32
d k=0.9 k=1 k=1.1 d k=0.9 k=0.97 k=1
2 16.3722 6463 16.3702 7659 16.3688 0566 2 16.4530 1027 16.4403 2108 16.4356 8055
3 16.3950 4388 16.3885 7773 16.3838 2911 3 16.4443 6917 16.4447 5173 16.444] 5705
4 16,3880 2277 16.3892 0726 16.3881 8273 4 16.4462 1855 16.4458 5480 16.4456 9700
5  16.3906 7876 16.3899 6324 16.3895 1135 5 16.4459 2075 16.4459 4803 16.4459 2406
8 16.3899 9188 16.3900 1519 16.3900 0643 7 16.4459 6509 16.4459 6614 16.4459 6541
11 16.3900 1718 16.3900 1632 16.3900 1562 9 16.4459 6639 16.4459 6642 16.4459 6640

E(R)=16.3900 1632, R =16.3618 0242,

B(R)= 0.0282 1390

Table 9
E(R) in (17) for n=64

k=0.9

k=1

k=1.1

- NV R Ty

16,3722 0375
16.3698 9208
16.3702 9829
16.3702 3191
16.3702 4246

16.3702 2727
16.3702 2727
16.3702 4101
16.3702 4101
16.3702 4103

16.3687 6490
16.3700 3102
16.3702 1306
16.3702 3739
16.3702 4056

E(R)=16.3702 4103, R = 16.3618 0242,

B(R)= 0.0084 3861

7. Mean square error of the ratio

approximate expressions given by

M(R) =

RZ oo
kg i=0

E(R)=16.4459 6642, R =16.3618 0242,

B(R)= 0.0841 6400

Gai(ko)  20y,i+1(ko) N Go,i+2{Ko)

In a similar way, we next obtain the mean square error M(R)=E(R - R)? and its

. -1
£ arn()

nr

Y2

}. (18)
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approximated to the second degree by

M@R) = R:

Oy 20y 0'02)'
| - s \Y2 1Y, Y?
to the third degree by
o 2 (3ky—2 2
Mty (Y2 (o0 200 a
kg ko Yy 1Y, Y;
2 o 20 O
2 ( 221 _ 122 N o:; )} ’ 20)
k \Y'Y, 1nY5 Y;
and to the fourth degree by
2 (6ka—8ky+3 2
ME):=%; [ P ("23 1 "";)
ks kK \Y! 1Y Y
. 2(4kp—-3) [ oy 201 Ops
- "2 2v st 3
ko Wy, ny; Y;
3 r( O 2013 On )}
+= - + : 21
kg le Y22 Y'l Y23 Y24 ( )

<1t is clear that, when k;=1, (10), (13)-(15) and (18)-(21) are identical to those
obtained from the conventional procedure.

8. Application of the catalyzer

The technique of introducing a catalyzer can be adopted to take expectations of
the expressions having statistics in the denominator or involving (square) root of
statistics such as regression coefficient, correlation coefficient, coefficient of varia-
tion, etc. For example, if ¥ is a positive and finite variable, and Y the expectation of
¥, then the expectation of ¥~! and the mean square error of ¥~! for ¥-! are directly
derived from the preceding theory by putting the numerator equal to unity. The
approximate expressions to the second degree are given by

2—-
E(Y-'):=Y-l(3k° 33k0+1+i_a_2 ’
k3 k3 Y2
mcpy;mys (Do) o3 o)
) ki Kk y2)’

where o, = E(Y - Y)? and k, is the catalyzer.
The expectation of /2 and the mean square error of P12 for Y2 are obtained
by using the catalyzer which satisfies | - kY|/kY <1.
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It follows that

> 172
f'l/Z____(kY)l/Z (l-l-w)
kY
= (kY)1? {1 LI ful.2 QI (—-—-——-’7_“’)2+ }
2 kv 8 \ kv

The approximate expressions to the second degree are given by

3kg +6ky— 1 1 o,
82 8k yt)’

3kZ + 6k — 1 1 o
82 k2 y?)

E(P12) .= Yx/z(

M(Y1?) :=2Y(1 -

This approach is applicable to the sample standard deviation as well.
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